8.1 Exploring the Logarithmic Function

A Logarithmic Functions	Ex 1. Convert the exponential form to the logarithmic form.
<i>Logarithmic function</i> is defined as the <i>inverse</i> function of the exponential function.	a) $8 = 2^3$
So, if $y = f(x) = b^x$ then $x = f^{-1}(y) = \log_b y$.	b) $10000 = 10^4$
Note. b is the base of the exponential function and the base of the logarithmic function.	c) $0.00001 = 10^{-5}$
The following expressions are equivalent:	d) $1024 = 2^{10}$
$y = b^x \iff x = \log_b y$	Ex 2. Convert the logarithmic form to the exponential form.
Reading: "log(arithm) (to the) base b of y "	a) $4 = \log_2 16$
Note. $y = b^x$ is called the <i>exponential form</i> and	b) $3 = \log_{10} 1000$
$x = \log_b y$ is called the <i>logarithmic form</i> .	c) $-4 = \log_{10} 0.0001$
	d) $4 = \log_5 625$
B Domain, Range and other Restrictions	Ex 3. Find if the following expressions are well defined.
The domain and the range of the exponential function:	a) $\log_{\sqrt{2}} 1$
$b^x:(-\infty,+\infty)\to(0,+\infty)$	b) log ₁ 2
are interchanged to obtain the <i>domain and the range</i> of the logarithmic function:	c) $\log_{\frac{1}{2}} \sqrt{2}$
$\log_b x: (0, +\infty) \to (-\infty, +\infty)$	d) $\log_2(-10)$
The base b satisfies the same restrictions from the exponential function:	e) log - 3
$b > 0, b \neq 1$	
C Basic Formulas	c) $\log_b \frac{1}{1} = -1$
Ex 4. Use the exponential-logarithmic conversion to prove the following basic formulas:	
a) $\log_b 1 = 0$	
	e) $\log_{\frac{1}{b}} b = -1$
b) $\log_b b = 1$	
	e) $\log_b b^n = n$

D Basic Equations	
Ex 5. Solve each equation by converting it to the exponential form.	c) $\log_x 16 = 2$
a) $x = \log_5 25$	d) $\log_x 3 = \frac{1}{2}$
b) $x = \log_4 1$	e) $\log_2 x = -2$
E Graph of the Logarithmic Function Ex 6. Graph on the grid provided below both $f(x) = 2^x$ and $f^{-1}(x) = \log_2 x$.	Ex 7. Graph on the grid provided below both $f(x) = 0.5^x$ and $f^{-1}(x) = \log_{0.5} x$.
 F Characteristics of the Logarithmic Function Ex 8. Use the graphs obtained at example 6 and 7 to conclude about the following characteristics of the logarithmic function. Domain: Range: x-intercepts y-intercepts: 	 Increasing/Decreasing: Horizontal Asymptotes: Vertical Asymptotes: Continuity: One-to-one: Key Points:

Reading: Nelson Textbook, Pages 448-450 **Homework**: Nelson Textbook, Page 451: #1ac 3, 4, 6, 8, 9